值得关注的4个大数据趋势
虽然有传言说Kafka背后的公司Confluent的估值为5B美元,但我们听说该解决方案难以大规模实施和管理。 我们被告知,Zookeeper尤其难以管理,尽管该团队正在更换此组件,但可以改善用户体验。 此外,我们听说维护可能会遇到挑战,因为主题数量会迅速增加,因此团队必须一致地平衡和升级实例。 诸如Apache Pulsar之类的新流媒体方法具有两层体系结构,其中服务和存储可以分别扩展。 这对于具有无限数据保留潜力的用例来说非常重要,例如记录事件可以永久存在的情况。 此外,如果您必须存储所有消息,则不需要将所有内容都存储在高性能磁盘中。 使用Pulsar,您可以将较旧的数据移至S3,而Kafka则无法。 还有自动平衡功能,这是AWS Kinesis无法做到的。 我们还听说用户对Pulsar比Kafka更轻的客户端模型表示了同情。 除了Kafka和Flink,还有其他系统,例如NATS和Vectorized。 对于实时数据处理,Apache Flink是最著名的。 当元素出现时,Flink会对其进行处理,而不是像Spark流这样的微型批次中对其进行处理。 微批量方法的缺点是批量可能非常庞大,需要大量资源进行处理。 对于不一致或突发的数据流,这可能尤其痛苦。 Flink的另一个优点是,您无需通过反复试验就可以找到适用于微型批次的适当配置。 如果配置生成的处理时间超过其累积时间,则存在问题。 然后批次开始排队,最终所有处理都将停止。 Materialise团队还提供了更新的流引擎,例如Confluent KSQL和Timely Dataflow。
ResearchAndMarkets预测,到2023年,全球事件流处理(ESP)市场将从2018年的6.9亿美元增长到$ 1.8B,在此期间的复合年增长率为22%。 根据与买家的对话,我们认为市场的增长速度快于此。 大多数数据驱动型公司都利用商业智能工具(如Looker,Tableau和Superset)来跟踪关键的KPI。尽管这些操作系统可以在度量标准超过特定阈值时主动发送警报,但分析人员仍然需要深入研究细节以确定KPI为何更改。诊断仍然相当手动。 我们看到了一套新的解决方案,可以使每个企业了解推动其关键指标的因素。 运营分析平台可帮助团队超越仪表板,了解其关键指标正在发生变化的原因。 通过利用机器学习,解决方案可以确定导致KPI更改的特定因素。 我们认为,在这个领域中存在机会,因为企业需要围绕哪些基本因素提供指导。 我们将生态系统分为三类:1)异常检测/根本原因分析;2)趋势检测;和3)数据洞察力。异常通常会急剧增加/减少,并在单一度量标准级别上运行。趋势检测可捕获异常,但更重要的是可捕获基础结构的漂移和变化。数据洞察力从大量数据中发现了意外情况。
有几家公司提供KPI可观察性。 Anodot,Lightup和Orbiter专注于异常检测和引起该变化的潜在因素。 Falkon和Sisu专注于异常检测和趋势检测。 Thoughtspot SpotAI和Outlier尝试从大量数据中产生最重要的见解,而无需人工监督/配置。 在下面的展览中,我们将所有相关类别的供应商都包括在内。 当前,大多数公司没有识别"脏数据"的过程或技术。通常,必须有人发现错误。然后,数据平台或工程团队必须手动识别错误并进行修复。这是一项耗时且乏味的工作(占用了数据科学家80%的时间),这也是数据科学家最抱怨的问题。
高质量的数据对于公司能否依赖它至关重要,而且不良数据的风险也很大。 尽管苛刻的观察结果"垃圾填入,垃圾填埋"困扰了几代人的分析和决策,但它对机器学习(ML)提出了特殊警告,因为开发模型所花费的时间很长。 如果ML工程师花费时间培训并提供使用不良数据构建的ML模型,则错误的ML模型将在生产中无效,并且可能对用户体验和收入产生负面的间接影响。 O'Reilly的一项调查发现,那些拥有成熟AI实践(通过生产模型的时间来衡量)的人将"缺乏数据或数据质量问题"作为阻碍进一步采用ML的主要瓶颈。 (编辑:江门站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |