加入收藏 | 设为首页 | 会员中心 | 我要投稿 江门站长网 (https://www.0750zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

pytorch与tensorflow

发布时间:2021-03-25 13:16:30 所属栏目:传媒 来源:互联网
导读:界是一种充满活力和合作的空间。我们从彼此的出版物中学到,辩论关于论坛和在线网点的想法,并分享许多代码(和许多)代码。这种合作精神的自然副作用是遇到同事使用的不熟悉工具的高可能性。因为我们不在真空中工作,所以在给定的主题领域中获得熟悉多种语言



界是一种充满活力和合作的空间。我们从彼此的出版物中学到,辩论关于论坛和在线网点的想法,并分享许多代码(和许多)代码。这种合作精神的自然副作用是遇到同事使用的不熟悉工具的高可能性。因为我们不在真空中工作,所以在给定的主题领域中获得熟悉多种语言和图书馆的熟悉程度往往是有意义的,以便合作和学习最有效。

这并不奇怪,那么,许多数据科学家和机器学习工程师在其工具箱中有两个流行的机器学习框架:Tensorflow和Pytorch。这些框架 - 在Python中 - 分享许多相似之处,也以有意义的方式分歧。这些差异,例如它们如何处理API,加载数据和支持专业域,可以在两个框架繁琐且效率低下之间交替。这是一个问题,给出了这两个工具的常见。

因此,本文旨在通过专注于创建和训练两个简单模型的基础知识来说明Pytorch和Tensorflow之间的差异。特别是,我们将介绍如何使用来自Pytorch 1.x的模块API和来自Tensorflow 2.x的模块API使用动态子类模型。我们将查看这些框架的自动差异如何,以提供非常朴素的梯度下降的实现。

但首先,数据

因为我们专注于自动差分/自动求导功能的核心(作为一种进修,是可以自动提取函数的导数的容量并在一些参数上应用梯度,以便使用这些参数梯度下降)我们可以从最简单的模型开始,是线性回归。我们可以使用Numpy库使用一点随机噪声生成一些线性数据,然后在该虚拟数据集上运行我们的模型。

(编辑:江门站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读